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Two Kondo impurities in nanoscopic systems
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Abstract. We study the problem of two Kondo impurities in a small system. Using a slave boson approach
we investigate the effect on the electron confinement of the Kondo physics of the two impurity problem. We
show that the confinement splits the symmetric and antisymmetric channels and for small systems weakly
coupled to a reservoir this gives two well defined behaviors: For the Fermi energy lying at a resonant state,
the two impurities are Kondo screened with two characteristic energy scales. For the Fermi energy between
two resonances, the inter-impurity interaction destroys the Kondo effect.

PACS. 72.10.Fk Scattering by point defects, dislocations, surfaces, and other imperfections (including
Kondo effect) – 72.15.Qm Scattering mechanisms and Kondo effect

The problem of Kondo like impurities in nanoscopic sys-
tems has been the subject of a number of recent works.
A Kondo impurity in the bulk of a metallic material can
be viewed, in its simple form, as a single quantum spin
interacting with an ideal electron gas via an antiferromag-
netic coupling JK . This interaction gives rise to a singu-
lar scattering at the Fermi surface and the simultaneously
screening of the impurity spin by the conduction electrons
spins [1]. Consequently, at low temperatures, the impu-
rity contribution to the resistivity increases logarithmi-
cally and the magnetic susceptibility saturates. There is a
characteristic temperature, known as the Kondo temper-
ature TK ∼ De−1/λ, with D the free electron band width
and λ = JK/D a dimensionless coupling constant, that
separates the low temperature from the high temperature
regimes. While for T � TK , the impurity spin is essen-
tially free and the problem can be treated by perturbations
in λ, for T � TK the impurity spin is screened and the
system can be described by an effective strong coupling
Hamiltonian. The two-impurity problem in bulk materi-
als has also been studied in detail due to the interesting
interplay between the Kondo effect and the inter-impurity
correlations [2]. In systems with electron hole symmetry
two impurities with two channels, symmetric and anti-
symmetric, present a quantum phase transition between
two different ground states: a non-Kondo state with strong
inter-impurity correlations for weak coupling and a Kondo
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regime for strong coupling. When the electron-hole sym-
metry is broken, the transition becomes a crossover.

During the last years, new realizations of the Kondo
problem have been achieved by artificially designing quan-
tum dots embedded in circuits [3]. In these cases, the quan-
tum dot may act as a magnetic impurity and the contacts
or leads as the host metal. The possibility of observing
the Kondo physics in quantum dots triggered a number of
experiments and theoretical works [4,5]. In this context,
the two quantum dots system has attracted recent inter-
est [6,7]. Although the problem studied in this work is
relevant for quantum dots in mesoscopic systems, for the
sake of clarity, in what follows, we refer to atomic Kondo-
like impurities.

Recent experiments posed the question of what hap-
pens with the Kondo effect when the metallic host is
reduced to sizes so small that the conduction electron
spectrum becomes discrete with an average level spac-
ing ∆ ∼ TK [8–11]. The problem has been analyzed us-
ing different techniques including numerical renormaliza-
tion group [9] and slave boson approaches [8,11]. The
one impurity problem in nanoscopic systems presents new
regimes induced by the electron confinement. This suggest
that the old two impurity problem could be also subject
to important effects if the impurities are embedded in a
small sample. In the present work we analyze what hap-
pens with the two-impurity problem in a nanoscopic sys-
tem and show how the confinement of conduction electrons
changes the Kondo physics. We show that in nanoscopic
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Fig. 1. (a), (b) and (c) show three possible geometrical con-
figurations of the system, the gray areas represent reservoirs
to which the nanoscopic system is weakly coupled. In (a) two
impurities are at the foci of an elliptical sample; (b) and (c)
represent two quantum dots connected to finite wires, the dots
are outside (b) or inside the wires, the wires are coupled to the
reservoirs. In (d) we show in solid lines the LDOS of the sym-
metric (η = +) and antisymmetric (η = −) states, in dashed
lines the sum of both.

systems, the confinement of the electronic states separates
the even and odd channels and in some sense greatly sim-
plifies the physics of the two-impurity problem.

The system is described by the following two-impurity
Anderson Hamiltonian [1]:

HAM =
∑
α,σ

εdd
†
ασdασ +

∑
α

Ud†α↑dα↑d
†
α↓dα↓

+
∑
ν,σ

ενc
†
νσcνσ

+
∑
α,ν,σ

(V ∗
ν,αc

†
νσdασ + Vν,αd

†
ασcνσ), (1)

here the subindex α = 1, 2 identifies the impurity, the
operator d†ασ creates an electron with spin σ and energy
εd at the α impurity, U is the intra-atomic Coulomb re-
pulsion, c†νσ creates an electron in an extended state with
quantum numbers ν and σ and energy εν . In this notation,
the nano-structure of the system is hidden in the struc-
ture of the one-electron extended states with energies εν

and wavefunctions ψν(r). In equation (1) the hybridiza-
tion matrix elements are taken proportional to the ex-
tended state wavefunctions at the impurity position, i.e.
Vν,α = V0ψν(Rα) where Rα is the coordinate of the α
impurity. For simplicity, in what follows we consider sym-
metric samples as those illustrated in Figure 1 with the
two impurities placed at equivalent points. Figure 1a is
an elliptical sample with the impurities at the foci, Fig-
ures 1b and c represent two quantum dots connected to
finite wires. The gray areas represent reservoirs to which
the systems are weakly coupled. The exact form of the
host density of states in the impurities sites is not rele-
vant here, thus it is included in a somehow idealized way.

Figure 1d shows the local density of states (LDOS) used
in the calculations. If the system is decoupled from the
reservoirs, the energy spectrum of the finite host consist
of a collection of levels separated by a characteristic en-
ergy ∆. As the system is weakly coupled to the reservoirs,
these states acquire a width that gives the life time for
electrons in the finite sample. Then the spectral density
of the host sample is characterized by two energy scales:
∆ that gives the energy separation of the resonant states
and decreases as the system increases, and the width of
the resonances γ, that decreases as the coupling with the
reservoir decreases. For small systems weakly coupled to
the reservoirs ∆ � γ and in what follows we consider
only this case. In any real system, all resonances do not
have the same width γ and their energy separation ∆ is
not constant. However the Kondo physics is dominated
by the behavior of the host spectral density at the Fermi
level and in our case, the parameters ∆ and γ refer to
the characteristic separation and width of the resonances
centered close to the Fermi energy. The calculation does
not require all ∆’s and γ’s to be the same. Note that the
relevant states are in general only one sector of the to-
tal Hilbert space: if for symmetry reasons Vν,α = 0, the
state with quantum numbers ν is not to be included in our
analysis. A schematic picture of the host spectral density
is shown in Figure 1d, due to the symmetry of the prob-
lem the local density of states at the coordinates of the
two impurities is the same, only the relative phase of the
hybridization matrix element may depend on α. As indi-
cated in the figure the spectral density can be separated
in the contributions from symmetric (with Vν,1 = Vν,2)
and antisymmetric (with Vν,1 = −Vν,2) states. This com-
pletely defines the properties of the host and we analyze
the cases in which the Fermi energy lies at a resonance
(at resonance case) or between two resonances (off res-
onance case). For one impurity, it has been shown that
these two cases present quite different behaviors [9]. The
structure in the local density of states becomes important
only when T ∼ ∆. For the at resonance case the univer-
sal Kondo behavior is recovered at low temperature with
a Kondo temperature that may be much larger than the
bulk Kondo temperature T 0

K corresponding to a system
with the average density of states ρ0. For the off reso-
nance case the screening takes place in two steps leading
to new partially screened regimes.

Using the slave boson theory at the saddle point ap-
proximation, we show that for the two-impurity problem,
the at resonance and the off resonance cases also give
quite different behaviors. To do so we proceed as in ref-
erences [12] and [13]. First we assume a large Coulomb
repulsion (U → ∞) and neglect double occupation of the
impurity orbital. The fermionic operator dασ is then de-
composed in a slave boson operator b†α that creates an
empty state and a fermionic operator fασ that destroys
a singly occupied state: dασ = b†αfασ. In terms of these
operators, the physical Hilbert space corresponds to the
sector with b†αbα +

∑
σ f

†
ασfασ = 1 that guarantees that

the impurity orbital is either empty or singly occupied
with a spin up or a spin down fermion. The Hamiltonian
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can be put as:

H =
∑
α,σ

εdf
†
ασfασ +

∑
ν,σ

ενc
†
νσcνσ

+
∑
ν,σ

(V ∗
ν,αc

†
νσfασb

†
α + Vν,αbαf

†
ασcνσ)

+
∑
α

λα(b†αbα +
∑

σ

f †
ασfασ − 1) (2)

where the last term represents the constrain that projects
the Hilbert space into the physical sector with the La-
grange multipliers λα. The saddle point approximation
corresponds to neglect the dynamics of the boson field
and replace b†α and bα by c-numbers. Due to the symmetry
of the problem – the impurities are placed at equivalent
points – we can take λ1 = λ2 ≡ λ and b1 = b2 ≡ b. It
is known that the RKKY inter-impurity interaction me-
diated by the conduction electrons is not obtained with
the saddle point approximation, it is recovered only when
the fluctuations around the saddle point are properly in-
cluded [12]. When working at a mean field level, it is a
standard procedure to add to the Hamiltonian an inter-
impurity interaction:

H ′ = I/2
∑
σ,σ′

f †
1σf1σ′ f †

2σ′ f2σ (3)

that has the same form as the RKKY interaction, I < 0
(I > 0) corresponds to a ferromagnetic (antiferromag-
netic) interaction between the impurities. At the end of
the calculation the parameter I can be put in terms of the
microscopic parameters of the original Hamiltonian to re-
produce the RKKY exchange. The RKKY interactions of
magnetic impurities in nanoscopic systems has been stud-
ied in some detail [14]. It has been shown that, in the limit
∆ � γ, the interaction between impurities at equivalent
positions is ferromagnetic or antiferromagnetic depending
on whether the system is at-resonance or off-resonance. In
what follows we discuss the two cases.

The at resonance case: This case corresponds to the
Fermi level lying at one of the resonant states of the host.
Regardless of the symmetry of this state [14], the inter-
impurity interaction is ferromagnetic, I < 0. Contrary
to the case of antiferromagnetic interactions, a ferromag-
netic interaction between impurities is irrelevant, it does
not change the properties of the ground state and we can
safely ignore it. More over, a mean field treatment of this
term with a link variable as is done below, does not change
the results. It is convenient to write the Hamiltonian in
terms of the symmetric and antisymmetric states charac-
terized by the index η = ±, with the plus and minus signs
corresponding to the symmetric and antisymmetric states
respectively.

H =
∑
η,σ

ε̃df
†
ησfησ +

∑
η,ν,σ

εηνc
†
ηνσcηνσ

+
∑
η,ν,σ

bVην(c†ηνσfησ + f †
ησcηνσ)

+ 2λ(b2 − 1) (4)

where ε̃d = εd + λ, fησ = (f1σ + ηf2σ)/
√

2 and we have
included the index η in the extended states quantum num-
bers to explicitly indicate their parity. The LDOSs of the
symmetric and antisymmetric extended states are shown
in Figure 1d.

The energy minimization with respect to b and λ gives:∑
η,σ

〈
f †

ησfησ

〉
+ 2(b2 − 1) = 0 (5)

and ∑
η,ν,σ

Vην

〈
f †

ησcηνσ

〉
+ 2λb = 0 (6)

with

〈
f †

ησfησ

〉
= − 1

π

∫ εF

dωIm
1

ω − ε̃d − b2V 2
0 gη(ω)

(7)

and∑
ν

Vην

〈
f †

ησcηνσ

〉
=

− V 2
0

1
π

∫ εF

dωImgη(ω)
1

ω + i0 − ε̃d − b2V 2
0 gη(ω)

. (8)

In these equations the propagator gη(ω) is given by:

gη(ω) =
∑

ν

|ψην(R1)|2
ω − εην + i0+

=
∫
dε

ρη(ε)
ω − ε+ i0+

(9)

where ρη(ε) is the contribution of the symmetric (η = 1)
and antisymmetric (η = −1) states to the local density of
states as shown in Figure 1. ε̃d gives the position of the
Kondo resonance. Solving these equations we obtain the
self consistent solution of the problem.

In terms of the auxiliary boson and fermion fields, the
impurity spectral density Ai(ω) is given by

Ai(ω) = − b2

2π

∑
η

Im
1

ω + i0 − ε̃d − b2V 2
0 gη(ω)

(10)

and the self consistent solution is shown in Figure 2 for
two sets of parameters. These results show that for small
energies and for the bulk Kondo temperature T 0

K < γ <
∆, the spectral density of each impurity can be put as the
sum of two resonances:

Ai(ω) ≈ − b2

2π
Im

(
1

ω + iTK1
+

1
ω + iTK2

)
(11)

with two energy scales TK1 and TK2 associated with the
two channels with parity η0 and −η0 at the Fermi level.
The ratio between these energy scales is not exponential, it
is given by TK2/TK1 = Nη0(εF )/N−η0(εF ) where Nη0(εF )
is the contribution to the local density of states of the
states with parity η0. This is so because the two channels
are not independent, in our approach they are linked by
the constrains.
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Fig. 2. Spectral density of the impurities in the at resonance
case for two values of the width γ (a) γ/T 0

K = 320, (b) γ/T 0
K =

170. In solid lines is shown the symmetric and antisymmetric
components and in dashed lines the total spectral densities.
The energy scale T 0

K is the Kondo temperature for one impurity
evaluated with an average density of states.

It is instructive to analyze the results in terms of a
real space picture. For the at resonance situation, the ex-
pectation value of the number of extended electrons in the
small system is close to an odd number. All resonances but
the one that is centered at the Fermi energy, contribute
with approximately zero or two electrons while the later
with one. That means that in the small system there is
a free spin 1/2. This spin can screen half of the localized
spins, and defines a screening energy TK2. The electrons
of the macroscopic host, with wavefunctions that pene-
trate the small system with exponential tails, complete
the screening within an energy scale TK1 < TK2. As the
temperature increases, first at T ∼ TK1 the correlation
between the localized spins and the spins of the reservoir
are destroyed and only for T > TK2 the localized spins are
free. The impurities magnetic moments are then screened
in two steps. According to expression (11), in this limit
(T 0

K < γ < ∆) the impurity spectral density, and all ther-
modynamic properties related to it, can be put as the sum
of the even and odd channels contributions. In particular
the low temperature susceptibility χ(T ) is the sum of two
Kondo-like susceptibilities with Kondo temperatures TK1

and TK2 respectively (see Fig. 4).
The off resonance case: This case corresponds to the

Fermi level lying between two resonant states of the host.
For this case and γ < ∆ the RKKY interaction is antifer-
romagnetic and then we take I > 0. The antiferromagnetic
interaction between impurities competes with the Kondo
effect and the two effects are to be treated at equivalent
footings. To do so we resort to a mean field approach as in
reference [15] and introduce a link variable χ12 in terms
of which the spin-spin interaction takes the form:

H ′ = −I/2
∑
σ

(χ12f
†
1σf2σ + hc) + Iχ2

12/2. (12)

We then proceed as in the previous case, the only dif-
ference is that now the diagonal energies of the symmet-
ric and antisymmetric localized states are shifted by the
spin-spin interaction: in Hamiltonian (4) the first term has
ε̃dη = ε̃d − ηIχ12/2. For the case we are discussing with
γ < ∆, the local density of states at the impurity sites is
small, and we are then in the weak coupling limit. For very
small inter-impurity interaction I, the Kondo resonance is
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Fig. 3. Impurity spectral densities with the Fermi level placed
off resonance. Parameters are like in Figure 2 with γ/T 0

K = 320.
In (a) the antiferromagnetic interaction I produces a split of
the density in two narrow peaks. In (b), a value of I greater
than a certain critical value decouples, in this approximation,
the impurities from the reservoir.
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Fig. 4. Schematic form of the impurity susceptibility for (a)
the at resonance case and (b) the off resonance case.

splitted in two resonances corresponding to the symmetric
and antisymmetric states. The impurity spectral density
Ai(ω) for this case is shown in Figure 3a. These results
were obtained assuming that the two host resonances that
are close to the Fermi level have different symmetries. The
reduction of Ai(εF ) is an indication of the weakening of
a Kondo effect. As I increases, the splitting of the double
structure of the Kondo resonance increases as the widths
of the line decreases. For I larger than a critical value, the
width becomes zero as in the homogeneous case [13]. In
general, for γ < ∆, at the off resonance case, we expect
to be in this limit where the Kondo effect is completely
destroyed by the inter-impurity exchange interaction. The
impurity susceptibility is then given by:

kBTχ(T ) =
4µ2

B

3 + eI/kBT
(13)

and its behaviour is shown in Figure 4, the change of be-
havior occurs for kBT ∼ I, indicating that the saturation
of the susceptibility is not due to a Kondo screening.

We have considered the case of small systems weakly
coupled to reservoirs, the results presented above corre-
spond to TK < γ < ∆. For a transition metal impurity
in a noble metal, like Co in Cu, the Kondo temperature
is of the order of 50 K. If we take ∆ ∼ �vF (π/L) with
L a characteristic dimension of the sample, the condition
TK < ∆ is fulfilled for L of the order of 100 Å. For a QD
on GaAs a typical Kondo temperature is TK = 1 K and
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for single channel wires this condition implies that L could
be as large as 1 µm.

For TK � ∆ the confinement effects are not relevant
and one should recover the behavior of the thermodynamic
limit (L→ ∞) as described in reference [7].

In summary, we have analyzed the two-impurity prob-
lem in mesoscopic systems. We have shown that for TK <
γ < ∆ the behavior of the system is very sensitive to the
relative position of the Fermi level and the structure of the
density of states. In particular we have analyzed the cases
in which the Fermi level is aligned with a resonant state,
or between two resonant states, of the mesoscopic sample.
The difference in the behavior is due to two effects, on one
hand the Kondo screening depends on the local density of
states at εF and on the other the RKKY interaction is
ferromagnetic for the at-resonance and antiferromagnetic
for the off-resonant case. The condition TK < γ < ∆, that
implies small samples, is appropriate to observe “quantum
mirages” [16] with one impurity. The effects observed with
two impurities for the “at resonance” case can be inter-
preted as a coherent interference of the Kondo effect of
one impurity with the mirage of the other [14,17].
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